pgm_learner

Summary

pgm_learner
Version:

2.0.13

Description:

Parameter/Structure Estimation and Inference for Bayesian Belief Network

Maintainers:
  • Yuki Furuta <furushchev AT jsk DOT imi DOT i DOT u-tokyo DOT ac DOT jp>
Licenses:
  • MIT
Authors:
  • Yuki Furuta <furushchev AT jsk DOT imi DOT i DOT u-tokyo DOT ac DOT jp>
BuildDepends:
BuildtoolDepends:
 
BuildExportDepends:
 
ExecDepends:
TestDepends:

Types

Message types

pgm_learner/DiscreteNodeState
Field:
  • node (string) –
  • state (string) –
string node
string state
pgm_learner/LinearGaussianGraphState
Field:
pgm_learner/LinearGaussianNodeState[] node_states
pgm_learner/GraphEdge
Field:
  • node_from (string) –
  • node_to (string) –
string node_from
string node_to
pgm_learner/DiscreteNode
Field:
string name
string[] outcomes
string[] parents
string[] children
pgm_learner/ConditionalProbability[] CPT
pgm_learner/LinearGaussianNode
Field:
  • name (string) –
  • parents[] (string) –
  • children[] (string) –
  • mean (float32) –
  • variance (float32) –
  • mean_scalar[] (float32) –
string name
string[] parents
string[] children

float32 mean
float32 variance

float32[] mean_scalar # scalar for parents
pgm_learner/LinearGaussianNodeState
Field:
  • node (string) –
  • state (float32) –
string node
float32 state
pgm_learner/ConditionalProbability
Field:
  • values[] (string) –
  • probabilities[] (float32) –
string[]  values
float32[] probabilities
pgm_learner/GraphStructure
Field:
string[] nodes
pgm_learner/GraphEdge[] edges
pgm_learner/DiscreteGraphState
Field:
pgm_learner/DiscreteNodeState[] node_states

Service types

pgm_learner/DiscreteQuery
Field (Request):
 
Field (Response):
 
pgm_learner/DiscreteNode[] nodes # information of each nodes
pgm_learner/DiscreteNodeState[] evidence # evidnce
string[] query # query
---
pgm_learner/DiscreteNode[] nodes # information of each nodes
pgm_learner/LinearGaussianParameterEstimation
Field (Request):
 
Field (Response):
 
pgm_learner/GraphStructure graph # graph skeleton
pgm_learner/LinearGaussianGraphState[] states # trial data
---
pgm_learner/LinearGaussianNode[] nodes # information of each nodes
pgm_learner/LinearGaussianStructureEstimation
Field (Request):
 
Field (Response):
 
pgm_learner/LinearGaussianGraphState[] states # trial data
float64 pvalparam # optional
uint16 bins # optional
uint16 indegree # optional
---
pgm_learner/GraphStructure graph # structure of network
pgm_learner/DiscreteStructureEstimation
Field (Request):
 
Field (Response):
 
pgm_learner/DiscreteGraphState[] states # trial data
float64 pvalparam # optional
uint16 indegree # optional
---
pgm_learner/GraphStructure graph # structure of network
pgm_learner/DiscreteParameterEstimation
Field (Request):
 
Field (Response):
 
pgm_learner/GraphStructure graph # graph skeleton
pgm_learner/DiscreteGraphState[] states # trial data
---
pgm_learner/DiscreteNode[] nodes # information of each nodes